Real-valued fast Fourier transform algorithms

نویسندگان

  • Henrik V. Sorensen
  • Douglas L. Jones
  • Michael T. Heideman
  • C. Sidney Burrus
چکیده

This tutorial paper describes the methods for constructing fast algorithms for the computation of the discrete Fourier transform (DFT) of a real-valued series. The application of these ideas to all the major fast Fourier transform (FFT) algorithms is discussed, and the various algorithms are compared. We present a new implementation of the real-valued split-radix FFT, an algorithm that uses fewer operations than any other real-valued power-of-2-length FFT. We also compare the performance of inherently real-valued transform algorithms such as the fast Hartley transform (FHT) and the fast cosine transform (FCT) to real-valued FFT algorithms for the computation of power spectra and cyclic convolutions. Comparisons of these techniques reveal that the alternative techniques always require more additions than a method based on a real-valued FFT algorithm and result in computer code of equal or greater length and complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementing Fast Fourier Transform Algorithms of Real-Valued Sequences With the TMS320 DSP Platform

The Fast Fourier Transform (FFT) is an efficient computation of the Discrete Fourier Transform (DFT) and one of the most important tools used in digital signal processing applications. Because of its well-structured form, the FFT is a benchmark in assessing digital signal processor (DSP) performance. The development of FFT algorithms has assumed an input sequence consisting of complex numbers. ...

متن کامل

A Polynomial Approach to Fast Algorithms for Discrete Fourier-cosine and Fourier-sine Transforms

The discrete Fourier-cosine transform (cos-DFT), the discrete Fourier-sine transform (sin-DFT) and the discrete cosine transform (DCT) are closely related to the discrete Fourier transform (DFT) of real-valued sequences. This paper describes a general method for constructing fast algorithms for the cos-DFT, the sin-DFT and the DCT, which is based on polynomial arithmetic with Chebyshev polynomi...

متن کامل

Fast Algorithms for the Hypercomplex Fourier Transforms

In multi-dimensional signal processing the Cliiord Fourier transform (CFT or in the 2-D case: quater-nionic Fourier transform/QFT) is a consequent extension of the complex valued Fourier transform. Hence, we need a fast algorithm in order to compute the transform in practical applications. Since the CFT is based on a corresponding Cliiord algebra (CA) and CAs are not commutative in general, we ...

متن کامل

Exact simulation of complex-valued Gaussian stationary processes via circulant embedding

Circulant embedding is a technique that has been used to generate realizations from certain real-valued Gaussian stationary processes. This technique has two potential advantages over competing methods for simulating time series. First, the statistical properties of the generating procedure are exactly the same as those of the target stationary process. Second, the technique is based upon the d...

متن کامل

Optimized Fast Algorithms for the Quaternionic Fourier Transform

In this article, we deal with fast algorithms for the quater-nionic Fourier transform (QFT). Our aim is to give a guideline for choosing algorithms in practical cases. Hence, we are not only interested in the theoretic complexity but in the real execution time of the implementation of an algorithm. This includes oating point multiplications, additions, index computations and the memory accesses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Acoustics, Speech, and Signal Processing

دوره 35  شماره 

صفحات  -

تاریخ انتشار 1987